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Algebraic curves & Riemann surfaces

Let X be a smooth irreducible projective curve of genus g defined
by a homogeneous polynomial F defined over C, i.e.

X : F(x, y, z) = 0 .

Over the complex numbers, X = X(C) has the structure of a
compact Riemann surface, that is, a 1-dimensional complex
manifold together with a complex structure.
In fact, there is a triple category equivalence between
• compact Riemann surfaces
• smooth irreducible projective curves over C
• algebraic function fields in one variable over C
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Notation & choices

In order to do computations we fix an affine model for X , e.g.

f (x, y) = F(x, y, 1) = 0

and a smooth branched covering of the complex projective line, e.g.

ϕ : X → P1(C), [x : y : z] 7→ [x : z]

which is a morphism of degree m = degy f with branch points

B = {[x : z] ∈ P1(C) | #ϕ−1([x : z]) < m}.

The corresponding function field is C(X) = Quot(C[x, y]/f (x, y)).
After these choices we view X as an m-sheeted Riemann surface
and C(X) as an algebraic extension of C(x) of degree m.
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Holomorphic differentials

The space of holomorphic differentials of X is a g-dimensional
C-vector space that can be described as

Ω1(X) = {hdx : h ∈ C(X) | ordP(hdx) ≥ 0 for all P ∈ X}.

Computing period matrices, we are primarily interested in a basis
ω̄ = (ω1, . . . , ωg) of Ω1(X), e.g.

1
y dx, x

y dx, . . . , xg−1

y dx if F is a hyperelliptic curve

or 1
∂yf dx, x

∂yf dx, y
∂yf dx if F is a smooth plane quartic.
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Homology group

For P ∈ X , the fundamental group G := π1(X ,P) of X consists
of the homotopy classes of closed paths on X based at P.

The first homology group of X , defined as
H1(X ,Z) = G/[G,G],

is a free abelian group of rank 2g. A basis (αi , βj) (1 ≤ i, j ≤ g)
of H1(X ,Z) is called canonical if the intersections satsify

αi ◦ βj = δij and αi ◦ αj = βi ◦ βj = 0

α1 α2 α3

β1 β2 β3
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Period matrices

With respect to such bases we define the matrices

ΩA =
(∫

αi

ω̄

)
and ΩB =

(∫
βi

ω̄

)

and call big period matrix the concatenated matrix

Ω = (ΩA,ΩB) ∈ Cg×2g.

We obtain a small period matrix in the Siegel upper half-space via

τ = Ω−1
A ΩB ∈ Hg,

i.e. τ is a symmetric matrix in Cg×g with positive definite
imaginary part.
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Jacobian & Abel-Jacobi map

The Jacobian J = Jac(X) can now be explicitly described as

J ∼= Cg/Λ, where Λ ∼= ΩZ2g.

J is an abelian variety of dimension g and, in particular, a complex
torus.
Example: If g = 1, then J ∼= C/Λ ∼= X is an elliptic curve.
For a base point P0 ∈ X the Abel-Jacobi map is defined as

A : X → J , P 7→
∫ P

P0

ω̄ mod Λ.

By linearity A can be extended to divisors on X .
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Applications in number theory

Period matrices or more generally, integration of differential forms
on a Riemann surface X , are required for computing

• the Abel-Jacobi map

• Theta functions Θ(z, τ) =
∑

v∈Zg e2πi
(

1
2 vTτv+vT z

)
,

• the endomorphism ring End(J ) (numerical approximation),
• the real period of J (appearing in the BSD conjecture),
• the regulator pairing for K2 of curves.

For all of these applications numerical integration has to be
performed
• rigorously (provable error bounds)
• to high numerical precision (hundreds or thousands of digits)
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Existing work

For genus 1 and 2 period matrices can be computed in almost
linear time to arbitrary precision (AGM, Borchardt mean).

For hyperelliptic curves of arbitrary genus there exist
• a Magma implementation due to P. van Wamelen,
• a Matlab implementation due to Frauendiener and Klein.

For general algebraic curves there are
• a Maple implementation due to Deconinck and van Hoeij,
• a Python/Sage implementation due to Swierczewski,
• a Matlab implementation due to Frauendiener and Klein,
• a Sage implementation due to Bruin is in progress.
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Essential tasks

Starting with an affine equation f (x, y), we obtain a big period
matrix by working through the following list:

• compute a basis ω̄ of Ω1(X)
• choose closed paths in the complex plane that generate
π1(P1(C) \ B, p0)
• lift paths to X via analytic continuation to obtain a

monodromy representation of ϕ
• use the monodromy to compute a basis of H1(X ,Z) and the

corresponding intersection matrix
• compute symplectic base change matrix
• perform numerical integration of differentials



Essential tasks

Starting with an affine equation f (x, y), we obtain a big period
matrix by working through the following list:
• compute a basis ω̄ of Ω1(X)

• choose closed paths in the complex plane that generate
π1(P1(C) \ B, p0)
• lift paths to X via analytic continuation to obtain a

monodromy representation of ϕ
• use the monodromy to compute a basis of H1(X ,Z) and the

corresponding intersection matrix
• compute symplectic base change matrix
• perform numerical integration of differentials



Essential tasks

Starting with an affine equation f (x, y), we obtain a big period
matrix by working through the following list:
• compute a basis ω̄ of Ω1(X)
• choose closed paths in the complex plane that generate
π1(P1(C) \ B, p0)

• lift paths to X via analytic continuation to obtain a
monodromy representation of ϕ
• use the monodromy to compute a basis of H1(X ,Z) and the

corresponding intersection matrix
• compute symplectic base change matrix
• perform numerical integration of differentials



Essential tasks

Starting with an affine equation f (x, y), we obtain a big period
matrix by working through the following list:
• compute a basis ω̄ of Ω1(X)
• choose closed paths in the complex plane that generate
π1(P1(C) \ B, p0)

• lift paths to X via analytic continuation to obtain a
monodromy representation of ϕ

• use the monodromy to compute a basis of H1(X ,Z) and the
corresponding intersection matrix
• compute symplectic base change matrix
• perform numerical integration of differentials



Essential tasks

Starting with an affine equation f (x, y), we obtain a big period
matrix by working through the following list:
• compute a basis ω̄ of Ω1(X)
• choose closed paths in the complex plane that generate
π1(P1(C) \ B, p0)

• lift paths to X via analytic continuation to obtain a
monodromy representation of ϕ
• use the monodromy to compute a basis of H1(X ,Z) and the

corresponding intersection matrix

• compute symplectic base change matrix
• perform numerical integration of differentials



Essential tasks

Starting with an affine equation f (x, y), we obtain a big period
matrix by working through the following list:
• compute a basis ω̄ of Ω1(X)
• choose closed paths in the complex plane that generate
π1(P1(C) \ B, p0)

• lift paths to X via analytic continuation to obtain a
monodromy representation of ϕ
• use the monodromy to compute a basis of H1(X ,Z) and the

corresponding intersection matrix
• compute symplectic base change matrix

• perform numerical integration of differentials



Essential tasks

Starting with an affine equation f (x, y), we obtain a big period
matrix by working through the following list:
• compute a basis ω̄ of Ω1(X)
• choose closed paths in the complex plane that generate
π1(P1(C) \ B, p0)

• lift paths to X via analytic continuation to obtain a
monodromy representation of ϕ
• use the monodromy to compute a basis of H1(X ,Z) and the

corresponding intersection matrix
• compute symplectic base change matrix
• perform numerical integration of differentials



Essential tasks

Starting with an affine equation f (x, y), we obtain a big period
matrix by working through the following list:
• compute a basis ω̄ of Ω1(X)
• choose closed paths in the complex plane that generate
π1(P1(C) \ B, p0)

• lift paths to X via analytic continuation to obtain a
monodromy representation of ϕ
• use the monodromy to compute a basis of H1(X ,Z) and the

corresponding intersection matrix
• compute symplectic base change matrix
• perform numerical integration of differentials



Our work

Magma implementation (A1) for general algebraic curves defined
over number fields, based on the approach of Deconinck and van
Hoeij:

• computes differentials using Magma’s function fields,
• uses spanning tree methods to construct paths (with Stefan
Hellbusch),
• analytic continuation is done via simultaneous root

approximation methods,
• employs the double-exponential integration scheme.

Compared to the Maple implementation, we compute period
matrices
• much faster and more reliably,
• to higher precision,
• for higher genera.
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• analytic continuation is done via simultaneous root
approximation methods,
• employs the double-exponential integration scheme.

Compared to the Maple implementation, we compute period
matrices
• much faster and more reliably,
• to higher precision,
• for higher genera.



New algorithm for superelliptic curves

Consider a superelliptic curve X given by an affine equation of the
form

ym = p(x),

where m ≥ 2,n = deg(p) ≥ 3 and p ∈ C[x] is separable.

For such curves (in joint work with Pascal Molin) we developed
and implemented algorithms in Magma (A2) and Arb (A3) that
rigorously compute period matrices and evaluate the Abel-Jacobi
map to arbitrary precision. More precisely:
• ’arbitrary’ precision (realistically ≈ 10000 digits)
• excellent scaling with the genus (g � 1000 possible)
• extremely fast and numerically robust
• better than Magma for hyperelliptic curves
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Advantages in the superelliptic case

Why is the superelliptic case so much easier?

• holomorphic differentials are of the form x i

yj dx
→ can find upper bounds for integrals
• need to compute only one (!) analytic continuation

y(x) = m
√

p(x), which can be done symbolically
• the monodromy at all finite branch points is equal and cyclic
of order m
• we can explicitly write down a generating set for H1(X ,Z)

and the corresponding intersection matrix
• desingularize integrals between branch points symbolically
→ integration between branch points possible
• we can integrate along the edges of a spanning tree
→ only g × (n − 1) integrations



Advantages in the superelliptic case

Why is the superelliptic case so much easier?

• holomorphic differentials are of the form x i

yj dx

→ can find upper bounds for integrals
• need to compute only one (!) analytic continuation

y(x) = m
√

p(x), which can be done symbolically
• the monodromy at all finite branch points is equal and cyclic
of order m
• we can explicitly write down a generating set for H1(X ,Z)

and the corresponding intersection matrix
• desingularize integrals between branch points symbolically
→ integration between branch points possible
• we can integrate along the edges of a spanning tree
→ only g × (n − 1) integrations



Advantages in the superelliptic case

Why is the superelliptic case so much easier?

• holomorphic differentials are of the form x i

yj dx
→ can find upper bounds for integrals

• need to compute only one (!) analytic continuation
y(x) = m

√
p(x), which can be done symbolically

• the monodromy at all finite branch points is equal and cyclic
of order m
• we can explicitly write down a generating set for H1(X ,Z)

and the corresponding intersection matrix
• desingularize integrals between branch points symbolically
→ integration between branch points possible
• we can integrate along the edges of a spanning tree
→ only g × (n − 1) integrations



Advantages in the superelliptic case

Why is the superelliptic case so much easier?

• holomorphic differentials are of the form x i

yj dx
→ can find upper bounds for integrals
• need to compute only one (!) analytic continuation

y(x) = m
√

p(x), which can be done symbolically

• the monodromy at all finite branch points is equal and cyclic
of order m
• we can explicitly write down a generating set for H1(X ,Z)

and the corresponding intersection matrix
• desingularize integrals between branch points symbolically
→ integration between branch points possible
• we can integrate along the edges of a spanning tree
→ only g × (n − 1) integrations



Advantages in the superelliptic case

Why is the superelliptic case so much easier?

• holomorphic differentials are of the form x i

yj dx
→ can find upper bounds for integrals
• need to compute only one (!) analytic continuation

y(x) = m
√

p(x), which can be done symbolically
• the monodromy at all finite branch points is equal and cyclic
of order m

• we can explicitly write down a generating set for H1(X ,Z)
and the corresponding intersection matrix

• desingularize integrals between branch points symbolically
→ integration between branch points possible
• we can integrate along the edges of a spanning tree
→ only g × (n − 1) integrations



Advantages in the superelliptic case

Why is the superelliptic case so much easier?

• holomorphic differentials are of the form x i

yj dx
→ can find upper bounds for integrals
• need to compute only one (!) analytic continuation

y(x) = m
√

p(x), which can be done symbolically
• the monodromy at all finite branch points is equal and cyclic
of order m

• we can explicitly write down a generating set for H1(X ,Z)
and the corresponding intersection matrix

• desingularize integrals between branch points symbolically
→ integration between branch points possible
• we can integrate along the edges of a spanning tree
→ only g × (n − 1) integrations



Advantages in the superelliptic case

Why is the superelliptic case so much easier?

• holomorphic differentials are of the form x i

yj dx
→ can find upper bounds for integrals
• need to compute only one (!) analytic continuation

y(x) = m
√

p(x), which can be done symbolically
• the monodromy at all finite branch points is equal and cyclic
of order m

• we can explicitly write down a generating set for H1(X ,Z)
and the corresponding intersection matrix
• desingularize integrals between branch points symbolically
→ integration between branch points possible

• we can integrate along the edges of a spanning tree
→ only g × (n − 1) integrations



Advantages in the superelliptic case

Why is the superelliptic case so much easier?

• holomorphic differentials are of the form x i

yj dx
→ can find upper bounds for integrals
• need to compute only one (!) analytic continuation

y(x) = m
√

p(x), which can be done symbolically
• the monodromy at all finite branch points is equal and cyclic
of order m

• we can explicitly write down a generating set for H1(X ,Z)
and the corresponding intersection matrix
• desingularize integrals between branch points symbolically
→ integration between branch points possible
• we can integrate along the edges of a spanning tree

→ only g × (n − 1) integrations



Advantages in the superelliptic case

Why is the superelliptic case so much easier?

• holomorphic differentials are of the form x i

yj dx
→ can find upper bounds for integrals
• need to compute only one (!) analytic continuation

y(x) = m
√

p(x), which can be done symbolically
• the monodromy at all finite branch points is equal and cyclic
of order m

• we can explicitly write down a generating set for H1(X ,Z)
and the corresponding intersection matrix
• desingularize integrals between branch points symbolically
→ integration between branch points possible
• we can integrate along the edges of a spanning tree
→ only g × (n − 1) integrations



Complexity

Let X : ym = p(x) be a superelliptic curve of genus g, where
p ∈ C[x] is separable of degree n.

Theorem
We can compute a basis of the period lattice Λ to precision D
digits using

O(n(g + log D)D2 log2+ε D)

binary operations, where ε > 0 is chosen such that multiplication
of precision D numbers has complexity O(D log1+ε D).

The complexity analysis for the computation of the standard
period matrices is dominated by linear algebra.
Even the absolute timings are dominated by linear algebra for very
large genera.
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Timings

Computation* of the big period matrix Ω = (ΩA,ΩB) for the
family of curves given by
• (x + y)n−1 + xny2 + 1 = 0 up to 20 significant digits

n 2 3 4 5 6 7 8 9 10
g 1 2 6 10 14 21 28 35 45

Maple 1.7s 5.6s 39s 2m 10s error 6m 45s 12m 58s 1h 14m error
(A1) 0.3s 0.9s 3.2s 10s 24s 1m 2m 4s 4m 43s 11m 18s

• ym = xn + 1 up to 500 significant digits
(m,n) (2,5) (2,11) (2,31) (2,101) (3,5) (3,11) (7,11) (77,11) (11,31) (101,31)

g 2 5 15 50 4 10 30 375 150 1500
Maple 17m 1h 4m - - 42m 5h - - - -
(A1) 28s 1m 30s 10m 2h 50s 2m 47s 12m 18s - 4h 32m -

Magma 1.6s 6.7s 1m 18s 1h 51m \ \ \ \ \ \
(A2) 0.15s 0.55s 3.7s 39s 3.8s 11s 14s 1m 35s 1m 32s 44m 32s
(A3) 0.035s 0.14s 1.2s 13s 1.7s 3.4s 3.8s 2m 19s 34s 2h 25m

*done on Intel Xeon(R) CPU E3-1275 V2 3.50GHz processor.
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Computations for the LMFDB

During a meeting aimed at expanding the ’L-functions and
modular forms database’ (LMFDB) to genus 3 curves, (A2) was
used, in conjunction with methods of Jeroen Sijsling (et al.), to
successfully compute the endomorphism rings of Jacobians of
67, 879 hyperelliptic curves of genus 3.

Moreover, we have confirmed the endomorphism rings for all
66, 158 genus 2 curves that are currently in the LMFDB.
In the future (A1) is going to be used for ≈ 60000 smooth plane
quartics.
For these applications big period matrices were computed to 300
digits precision.
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Links

• Our package for superelliptic curves is available at github:

github.com/pascalmolin/hcperiods

• LMFDB: www.lmfdb.org
• Arb: www.arblib.org

http://www.lmfdb.org/
http://arblib.org/

